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Until recently, in the determination of the optimal supersonic axisym-

metrical nozzles the gas motion was considered without rotation around the

axis. The problem for equilibrium gas flow is studied completely enough1.

The rejection of the rotation of the flow is the restriction that can decrease the

nozzle thrust, other conditions being equal. It is easy to show that the

uniform flow parallel to the axis supplies maximum thrust if the given length

of a nozzle is zero or allows the uniform flow. If the given length does not

allow that then the use of the arbitrariness of gas rotation may increase the

nozzle thrust. A simple example shows that such a possibility takes place.

SYNIBOI

a  sound velocity

h parameter defined by eqn. (4)

h parameter defined by eqn. (9)

p pressure

parameter defined by eqn. (9)

Q mass flow through tube

r co-ordinate

T thrust

u, r velocity vector components

w peripheral velocity

x Cartesian co-ordinate

X length of nozzle

z parameter defined by eqn. (9)

y circulation
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0 angle defined by eqn. (9)
2,, 22 constants defined by eqn. (12)

p angle defi ned by eqn. (9)

p density

z isentropic exponent

iji stream function

Axisymmetrical isoenergetical isentropical motion of the perfect gas is

described as follows
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are Cartesian co-ordinates of meridianal plan of the flow,

are the velocity vector components,

is the density,

is the sound velocity,

is the circulation,

is the stream function and

is an isentropic exponent.

All the variables are dimensionless.

The pressure p and the peripheral velocity w are determined by the

equalities

p= w =
y(0)

(2)

The second equation of system (1) can be replaced by

,  r(p+PU  )+ rpm, = 0
( xcr (3)

Along characteristics of eqns. (I ) the following relations take place

21 _a2
dr = (4)

tw-F ab
dx,  h = (u  2 +  v2— a2)

a 2r2 +y2 u
hOd//+( —au +10 dr + 2 2 .dr) = 0 (5)

(1-r —y

The upper and lower signs belong to different families of characteristics.

where
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We consider the simple problem. Let the gas flow (Fig. 1) go into the
nozzle with the contour ab  through cylindrical tube with the contour sa.  Let
then the length of the nozzle  X,  the radius  Oa  and the mass flow be given.

The complete enthalpy of the gas is constant. Among all the possible con-
tours of the nozzle it is necessary to find the one which provides the maximum

thrust.
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FIG. I

We consider value y to be constant. In this case the flow takes place above
the line  tgf.  Below the line there appears a stagnation region with constant

press ure.

If the flow in a tube does not depend on x then

u  =  u,  = const, r = 0 (6)

We denote the pressure in the stagnation region and in the outer flow by

p. The mass flow  Q  through the tube is determined by the integration of
the last equation of (1) with respect to (6)

Q \i/(x-i, f 7+1
r  dr

2 ) ,,, — I "6 r2

ro =  -- uo
[Z+ I 2  2

Z— I

where ro corresponds to p=po„ and is determined by the first equation of (2).


Equations (7) allow  u0  and 1.0to be found if  Q  and p , are given. The charac-




teristic of the second family  ag  can be found by means of equalities (4) and (6).

The full thrust  T  is defined by the equality

-  pt I + — ,,— r0)  (8)_ f +u)-(7-1 )T2i -d fr" .d P2'(" 2 2
27-c 2zrU

(7)
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We consider the region  agjha  and integrate eqn. (3). According to the Green

formula we transform the integral to a contour one. Using the relations along

a stream line and characteristics we have
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In the same way the first equation of (1) gives

	

Q = pq  sin  p
r dr  (10)

	

2m J r 1
sin  (0 + p)

The length of the nozzle Xis

f (7+  1)(uil  — 1 )r2  +(/ )i.2
X =  ctg(0 + p)dr

ro [i+ —(7.— I )4]r2 HZ— 11"1- rf




We formulate the variational problem when -; is given. It is necessary to

find functions  p(r)  and  0(r)  alone characteristic  fb  which gives maximum to

functional (9) under the isoperimetrical conditions (10), (11) under the

differential condition (5) along the characteristic of the first family and with

the given initial characteristic  ag  defined by equalities (6) and (7).

This problem is analogous to that on the definition of the optimal nozzle

contour at y=0. It can be solved by the same method'7). Below are the results

of the solution.

Contour  sah  has the discontinuity of the first derivative at point  a.  The flow

in region  aciga  is determined by eqns. (1), the given characteristic  ag  and

condition (5) for characteristics of the first family at point  a.

Functions  p(r)  and  0(r)  along characteristic  eh  are determined by

equalities

sin'cos (0—  p)
zu=

COS/1COS  p



where Z, and 2, are constant. Their magnitudes are calculated according to

formulas (12) at point  e  so that  p  and O at this point are continuous.

Function  x(r)  along  ch  is calculated by integration of eqn. (4).

Co-ordinates .ye and  rr.  and value r h  must satisfy equalities (10) and (11)

(9)
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at given Q and  X  and equality

sin sin cos 0
cr.(

p  0
—

cos p
=

at x=.\-1, The last equality is the generalisation or Busemann condition' I for
rotating flows.

The general solution of similar problem by the method of Ref. 5 would
allow us to determine function ,,,(0).But the aim of the present paper is to
show that the rotation of the flow allows the nozzle to increase thrust.
Therefore the circulation was adopted to be constant. The calculations have
been performed at y =1.4 with counterpressure  p , =0.0002259.  The value of
mass flow corresponds to  uo=  1.5 when 0. The lengths of nozzles  X  and
values 7 have been varied. The circulations showed that in this case the
nozzles with rotating flow had 0-4 per cent stronger thrust than the one
with 7=0.
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Disc uss1 ON

Dr. K. Kraemer  (AVA, Bunsenstr. 10, 34 Gottingen, W. Germany): Is the
stagnant air region near the nozzle-axis bounded by a Helmholtz-discontinuity-
surface of constant pressure? What is the physical meaning?

Yu. Shmyglevsky:  The calculations refer to a non-viscous gas.




